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On the nucleon self-energy in nuclear matter
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Abstract. We consider the nucleon self-energy in nuclear matter in the absence of Pauli blocking. It is
evaluated using the partial-wave analysis of NN scattering data. Our results are compared with that of a
realistic calculation to estimate the effect of this blocking. It is also possible to use our results as a check
on the realistic calculations.

PACS. 21.30.-x Nuclear forces – 21.65.+f Nuclear matter

1 Introduction

A fundamental problem of nuclear physics is to explain the
properties of nuclear matter (and finite nuclei) in terms of
an effective field theory at low energy based only on the
(chiral) symmetry of QCD. While such a theory has been
eminently successful for systems like ππ and πN [1], a
satisfactory theory for the NN system has been difficult
to formulate due to the presence of two-nucleon bound or
virtual states close to the threshold of NN scattering [2].
In particular, the leading chiral four-nucleon interaction
predicts an absurdly large value for the self-energy of the
nucleon at normal nuclear density [3].
There is, however, a semi-phenomenological approach

that yields fairly accurate values for different observables
in nuclear matter. Here theNN potential is constructed by
exchanging low-mass bosons in the t-channel [4]. The cou-
pling and other parameters in the potential are determined
by experimental data on the deuteron and the low-energy
NN scattering. The dynamics is formulated on the ba-
sis of a relativistic version of the Brueckner-Hartree-Fock
method [5,6], where the reaction matrix satisfies a three-
dimensionally reduced Bethe-Salpeter equation in nuclear
medium. The Dirac equation for the nucleon incorporates
the scalar part of the self-energy due to its interaction with
nucleons in the medium. The self-energy itself is given by
the diagonal element of the reaction matrix. The system
of equations is then solved self-consistently.
In this work we study the nucleon self-energy in a cer-

tain theoretical limit. We observe that if we suspend the
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Pauli-blocking operator (projecting onto the unoccupied
states) in the equation for the reaction matrix, it coincides
with the one for the scattering matrix in vacuum. Further,
if we do not include the relevant part of the single-particle
self-energy in the mass term in the Dirac equation, the
requirement of self-consistency does not arise any more.
In this limit the self-energy is given by an integral over
the spin-averaged, forward NN scattering amplitude in
vacuum, which can be evaluated entirely with the experi-
mental data.

There is a well-known expansion in statistical mechan-
ics, called the virial expansion, whose first term for the
in-medium self-energy would give exactly the theoretical
limit considered above [7–9]. Here we employ this method
to derive the formula for the limiting self-energy of the
nucleon. We then evaluate it at different nuclear densi-
ties, using the phase shift analysis of NN scattering data,
independently of any NN potential. It is then compared
with the realistic calculation [6] to assess the importance
of the effect of Pauli blocking in nuclear matter.

Our calculation would also serve as an important check
on the realistic calculation. One has just to repeat the cal-
culation of the self-energy in the original framework itself,
using the phenomenological potential and the physical nu-
cleon mass, but in the theoretical limit of omitting the
Pauli-blocking operator in the reaction matrix. This re-
sult as a function of the nuclear density must agree with
that of the present calculation. This, in turn, would con-
firm our assertion that it is indeed the Pauli-blocking effect
which distinguishes the realistic calculation from the one
presented here.
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2 Derivation of self-energy formula

Here we obtain the leading term in the virial expansion for
the nucleon self-energy in nuclear medium [7–9]. We begin
by stating clearly the normalization of different quantities.
Omitting the nucleon isospin index [10], we take the cre-
ation and the annihilation operators for the nucleon with
momentum p and spin projection σ (= ± 1

2 ) to satisfy the
anticommutation relation,

{b(p, σ), b†(p′, σ′)} = (2π)3 2Ep δ(p− p′)δσσ′ ,

Ep =
√

p2 +m2 . (2.1)

The single-nucleon state is defined as |p, σ〉 = b†(p, σ)|0〉 .
Similarly the two-nucleon state is |p1, σ1;p2, σ2〉 =
b†(p1, σ1)b

†(p2, σ2)|0〉. Clearly their normalization is fixed
by the anticommutation rule (2.1). The (positive-energy)
Dirac spinors are normalized such that the spin sum over
these spinors, to be used below, is given by

∑

σ

u(p, σ)u(p, σ) = p/+m .

The derivation starts by considering the nucleon self-
energy in vacuum, which may be expressed as an S-matrix
element,

−i(2π)4δ4(p′1 − p1)u(p
′
1, σ

′
1)Σ

(0)(p)u(p1, σ1) =

〈0|b(p′1, σ′1) (S − 1) b†(p1, σ1)|0〉 , (2.2)

where S is the familiar scattering matrix operator, S =

Tei
∫

Lint(x) d4x, for an interaction Lagrangian Lint. The
subscript 1 on the variables of the particle anticipates a
second particle in the medium with which the first one will
interact. In fact, we shall express below the nucleon self-
energy in nuclear medium in terms of the NN scattering
amplitude in vacuum, defined, as usual, by

〈p′1, σ′1;p′2, σ′2|S − 1|p1, σ1;p2, σ2〉 =
i(2π)4δ4(p′1 + p′2 − p1 − p2)

×M(p1, σ1; p2, σ2 → p′1, σ
′
1, ; p

′
2, σ

′
2) , (2.3)

where M stands for the scattering matrix sandwiched be-
tween spinors corresponding to the final and the initial
states of the two nucleons.
Below we shall meet the spin-averaged amplitude in

the forward direction,

M(p1, p2 → p1, p2)) =

1

4

∑

σ1,σ2

M(p1, σ1; p2, σ2 → p1, σ1; p2, σ2), (2.4)

With our normalization of states, the amplitude M is
Lorentz invariant.
To obtain the self-energy in nuclear medium, we have

to replace the vacuum expectation value in eq. (2.2) by an
appropriate one. Although we specialize later to zero tem-
perature, we take here the most general average over an
ensemble of systems maintained at temperature T (= 1/β)

with nucleon chemical potential µ. Thus the in-medium
self-energy Σ is given by

−i(2π)4δ4(p′1 − p1)u(p
′
1, σ

′
1)Σ(p)u(p1, σ1) =

〈b(p′1, σ′1)(S − 1)b(p1, σ1)〉 , (2.5)

where for any operator O,

〈O〉 = Tr[e−β(H−µN )O]/Tre−β(H−µN ) .

Here H is the Hamiltonian and N the nucleon num-
ber density operator. Clearly this form of the Boltzmann
weight breaks explicit Lorentz invariance and singles out
the rest frame of the medium [11].
We now make use of the virial expansion to first order

in density. For an operator O, the ensemble average in
nuclear medium can be expanded as

〈O〉 = 〈0|O|0〉+
∑

σ2

∫

d3p2

(2π)32Ep2

n(Ep2
)〈p2, σ2|O|p2, σ2〉 ,

where n(Ep) is the nucleon distribution function, n(Ep) =

1/[eβ(Ep−µ) + 1]. Applying it to the left-hand side of
eq. (2.5), we get for the difference Σ(n)(p) = Σ(p) −
Σ(0)(p),

−i(2π)4δ4(p′1 − p1)u(p
′
1, σ

′
1)Σ

(n)(p1)u(p1, σ1) =
∑

σ2

∫

d3p2

(2π)32Ep2

n(Ep2
)

×〈p2, σ2|b(p′1, σ′1)(S − 1)b†(p1, σ1)|p2, σ2〉 . (2.6)

The matrix element in eq. (2.6) will be immediately recog-
nised to be the NN scattering amplitude defined above by
eq. (2.3). Cancelling the δ-function on both sides, we set
σ′1 = σ1 and sum over σ1 also to get

−tr{Σ(n)(p1)(p/1 +m)} =

4

∫

d3p2

(2π)32Ep2

n(Ep2
)M(p1, p2 → p1, p2), (2.7)

where the tr(ace) is over matrices in Dirac space. Note the
similarity of this equation with the corresponding one in
Brueckner theory [12]. There is, however, one important
difference: Our first-order formula has the scattering am-
plitude in vacuum, while it is the amplitude in medium

that enters the equation in Brueckner theory. We shall
discuss this point again in sect. 4.
So far we did not state explicitly the isospin structure

of the amplitude M , which is now easy to figure out. We
consider symmetric nuclear matter and work in the limit
of isospin symmetry. Let the traversing nucleon be in any
one of its isospin states, say a proton. It may scatter with
a proton or a neutron in the medium. The amplitude is
therefore given by the sum,

M =Mpp→pp +Mpn→pn . (2.8)

We now restrict to the case, where the three-
momentum p1 is set equal to zero. Then the rest frame of
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the medium coincides with the lab frame of the scattering
process. The self-energy in this frame has the simple Dirac
matrix structure,

Σ(n) = U · 1 + V γ0, (2.9)

where the coefficients U and V depend only on the nucleon
density. Then the left-hand side of eq. (2.7) simplifies to
−4m(U + V ). On the other hand, the nucleon propagator
with self-energy correction, i/{p/1−m−Σ(n)(p1)}, reduces,
for p1 = 0, to

i

p0 − (m+ U + V )

1

2
(1 + γ0) , (2.10)

in the vicinity of the pole. The shifted pole position is thus
given by

m∗− i

2
γ = m+U+V = m− 1

m

∫

d3p2

(2π)32Ep2

n(p2)M(p2),

(2.11)
where m∗ is the effective mass of the nucleon and γ gives
the damping rate of nucleonic excitations.

3 Evaluation

In our evaluation we restrict ourselves to nuclear matter
at zero temperature. In this limit we assume the nuclear
medium to be a non-interacting Fermi gas with all states
filled up to the Fermi momentum pF, so that n(p) →
θ(pF−|p|). For the symmetric medium the number density
is then given by

n = 4

∫

d3p

(2π)3
θ(pF − |p|) =

2p3
F

3π2
,

where pF is related to the chemical potential by pF =
√

µ2 −m2.
The scattering amplitudes are generally analysed in

the center-of-mass (c.m.) frame, where they are normal-
ized in a slightly different way to get a simple expression
for the differential cross-section. One defines a scattering
amplitude f related to M by

dσ

dΩ
=

|M |2
(8πE)2

≡ |f |2 , (3.1)

where E is the total energy in the c.m. frame. The results
of partial-wave analysis are generally given as functions
of the lab kinetic energy T (=

√

p2
2 +m2 − m), in terms

of which we have E =
√

2m(2m+ T ). We also note here
the expression for the c.m. momentum in terms of T , k =
√

mT/2.
We can now write eqs. (2.11) as

m∗− i

2
γ = m− 2

π

√

2

m

∫ TF

0

dT
√
T (2m+ T )f(T ) , (3.2)

where TF, the upper limit of the integral, is related to pF

by pF =
√

TF(2m+ TF) and

f = fpp→pp + fpn→pn,

the bar indicating spin averaging as in eq. (2.4). In terms
of amplitudes with definite isospin,

f = 3/2f
(I=1)

+ 1/2f
(I=0)

.

The full scattering amplitudes are expanded in a series
of partial-wave amplitudes, which may then be determined
by fitting with experimental scattering data. For the spin-
averaged, forward scattering amplitudes, this expansion
takes a particularly simple form [13,14],

f
I
(E) = 2 · 1

4

∑

jsl

(2j + 1)f Ijsl,l (E) . (3.3)

Here the factor of 2 takes into account the identity of the
two nucleons in the scattering process. The total angular
momentum j is obtained by coupling the total spin and
orbital angular momenta s and l, respectively. The Pauli
principle restricts the possible amplitudes by requiring the
quantum numbers to satisfy

(−1)l(−1)1−s(−1)1−I = −1 .

In general, the amplitude f Ijs(E) is a matrix in the l
space, whose diagonal elements enter the sum in eq. (3.3).
Below we shall remove the superscripts I and s on the
partial-wave amplitudes.
The form of the partial-wave amplitudes is determined

by the unitarity of the S-matrix. Thus, for the uncoupled
waves, s = 0, l = j and s = 1, l = j, we have the single
element,

f jl,l(E) ≡ f jl (E) =
(

e2iδ
j

l
(E) − 1

)

/2ik, l = j ,

where δjl is the phase shift, a real function of E. But the
waves s = 1, l = j±1 are coupled, leading to a 2×2 matrix
amplitude with the diagonal elements of the form [15],

f jl,l(E) =
(

e2iδ
j

l
(E) cos εj(E)− 1

)

/2ik, l = j ± 1 ,

where we have the mixing parameters εj(E) in addition
to the phase shifts.
We may now evaluate the integral (3.2), using the

phase shift analysis of the Nijmegen group [16]. Alterna-
tively we may take advantage of the reconstruction of the
full (Saclay) amplitudes from this analysis, also carried
out by the same group. The general amplitude may be
written in the c.m. frame as a 4 × 4 matrix in the Pauli
basis as [17]

M(p,p′) = 1
2
{as + bs + (as − bs)σ1 ·nσ2 ·n

+(cs + ds)σ1 ·mσ2 ·m+ (cs − ds)σ1 ·l σ2 ·l} ,
(3.4)
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Fig. 1. Shift in nucleon mass in nuclear matter as a function of
the Fermi momentum. The solid curve results from the partial-
wave analysis of the Nijmegen group, while the dashed one is
from the s-waves in the effective-range approximation.
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Fig. 2. Damping rate of nucleonic excitation in nuclear matter
as a function of the Fermi momentum. The origin of solid and
dashed curves are the same as in fig. 1.

where the Saclay amplitudes, as, bs , cs and ds, are com-
plex functions of the energy and scattering angle. (We
omit a fifth amplitude, which is zero in the forward direc-
tion.) Here l ,m and n are three mutually orthogonal unit
vectors. The Pauli matrices σ1 ,σ2 act on the Pauli spinors
χ’s of the first and second nucleon. The spin-averaged, for-
ward amplitude f is obtained fromM as

f(E) =
1

4

∑

σ1,σ2

χ†σ2
χ†σ1
M(p,p)χσ1

χσ2

=
1

2
(as(E) + bs(E)) . (3.5)

With the values of the Saclay amplitudes [16], we evaluate
the real and the imaginary parts of the integral (3.2) at
different Fermi momenta. The results are shown by the
solid curves in figs. 1 and 2.
For an independent, but approximate, estimate, we

also evaluate the integrals by including only the s-waves
in the effective-range approximation. Here an s-wave am-
plitude is written as f0 = 1/(k cot δ − ik) with k cot δ =
−a−1+rk2/2, where a and r are the scattering length and

the effective range. The values of these constants are long
known [13]: For the spin singlet state, a = −23.7, r = 2.7
and for the spin triplet state, a = 5.39, r = 1.70, all in
units of fm. This evaluation is shown by the dashed curves
in figs. 1 and 2. It is seen that the higher partial waves
contribute little up to about pF = 1 fm

−1.

4 Discussion

Here we have considered the nucleon self-energy in nuclear
matter, in the limit of ignoring the effect of Pauli blocking
on it. This self-energy can be expressed in terms of the for-
ward spin-averaged NN scattering amplitude in vacuum.
We calculate its real and imaginary parts, using the phase
shift analysis of experimental data on NN scattering.
Our results may be compared with that of the self-

consistent Hartree-Fock calclation [6] to get an idea of
the importance of Pauli blocking in the Fermi medium.
(Since we do not include the relevant part of the self-
energy in the nucleon mass, it would be appropriate to
compare our results with their so-called “non-relativistic”
version of the results.) In both the calculations the mass
shift is a strongly dependent function of the nuclear den-
sity. At normal nuclear density (pF = 1.35 fm

−1) they find
the (real part of the) mass shift to be −87 MeV; in our
calculation this value is attained at a higher density cor-
responding to pF = 1.70 fm

−1.
Our calculation, which is based only on experimental

data, readily provides a check on the the original rela-
tivistic Brueckner calculation [6]. We just need redo this
calculation without the Pauli operator in the equation for
the reaction matrix. The resulting calculation with the
phenomenological potential should yield the same func-
tional dependence of the self-energy on nuclear density as
we find here.
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